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The dynamic deformation of a solid elastic sphere which is immersed in a viscous fluid 
and in close motion toward another sphere or a plane solid surface is presented. The 
deformed shape of the solid surfaces and the pressure profile in the fluid layer 
separating these surfaces are determined simultaneously via asymptotic and numeri- 
cal techniques. This research provides the first steps in establishing rational criteria 
for predicting whether a solid particle will stick or rebound subsequent to impact 
during filtration or coagulation when viscous forces are important. 

1. Introduction 
The motion of solid particles in fluids underlies the physics of a host of fascinating 

phenomena including sedimentation, filtration, coagulation, microbial interactions, 
slurry transport, and suspension rheology, to name but a few. In many of these 
applications, a key role is played by collisions or very close relative motion between 
two interacting particles or between a particle and a solid surface such as the 
container wall or the surface of a filter fibre. A detailed analysis of this close-contact 
motion requires consideration of the dynamic shape and separation of the particle 
surfaces in the vicinity of contact which, in turn, influence the interparticle forces 
and the hydrodynamic interaction between the particles. On the other hand, the 
molecular and hydrodynamic forces acting upon the nearly touching surfaces can 
cause the particles to deform unless they are very rigid. In order to elucidate the basic 
physics of this near-contact relative motion, this paper considers the dynamic 
deformation of an elastic sphere which is moving toward a second sphere, or toward 
a plane surface, under the condition that the two solid objects are separated by a 
thin fluid layer. The theory takes into account the coupling between the equations 
of solid mechanics and fluid dynamics that arises naturally in describing collisions 
of elastic particles in fluids. 

A similar coupling between fluid dynamics and elastic solid mechanics is the focus 
of elastohydrodynamic lubrication theory, which has received considerable attention 
in the tribology literature. Historically, elastohydrodynamics has been concerned 
with the deformation of highly loaded gears and bearings as a result of stress 
distributions in their lubricating fluids. In the current work, we have developed 
elastohydrodynamic theory for two elastic spheres of arbitrary radii undergoing a 
collision in a viscous fluid. This problem is of fundamental importance in the areas 
of filtration, coagulation, and adhesion of small particles. 

Recent progress in the areas of the filtration and coagulation of aerosol and 
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hydrosol dispersions has been summarized by Pruppacher & Klett (1978), Loffler 
(1980), Prodi & Tampieri (1982), Tien & Payatakes (1979) and Schowalter (1984). 
Current research continues on related topics such as granular-bed filtration (Gal, 
Tardos & Pfeffer 1985), dendritic deposition of aerosol particles on filter fibres 
(Payatakes & Gradon 1980), and the coagulation of sedimenting polydisperse 
suspensions (Davis 1984; Melik & Fogler 1984). Although these papers vary in the 
degree of sophistication to which hydrodynamic and colloidal forces are taken into 
account, their common factor is the use of a trajectory analysis to determine the rate 
a t  which collisions occur. Moreover, i t  is generally assumed that, when a particle 
collides with another particle or with a filter element, i t  remains collected. However, 
as pointed out by several researchers, including Gal et al. (1985), Dahneke (1971), and 
Loffler (1980), the rebounding of particles subsequent to collision may significantly 
lower the rate of collection. Indeed, for experiments on the collection of micron-sized 
latex particles in granular-bed and fibre filters, Gal et al. (1985), Tsiang, Wang & Tien 
(1982), Tardos, Pfeffer & Squires (1979), Ellenbecker, Leith & Price (1980), and 
D’Ottavio & Goren (1983) reported that significant rebounding of particles occurred, 
as indicated by a decrease in the capture efficiency below theoretical predictions 
without bouncing. As expected, this particle bouncing increased as the kinetic energy 
of the particles was increased. No such reduction in the capture efficiency was 
observed when liquid dioctylphthalate (DOP) aerosols were used. Gal et al. (1985) also 
reported that coating the collector with DOP reduced the bouncing of solid aerosol 
particles. 

The theoretical works mentioned above are very significant in that they provide 
models for determining the rate a t  which particle collisions occur. However, in order 
to obtain a complete understanding of the very important processes of filtration and 
coagulation, there remains the need for an accurate assessment of the sticking 
probability (i.e. the fraction of collisions that are not followed by rebound). Intuition 
and experience tell us that there are two limiting cases. When elastic particles collide 
in a vacuum, or under conditions of negligible fluid resistance, then physical contact 
occurs. The incoming kinetic energy of the particles is converted into elastic strain 
energy as they deform in the vicinity of contact. The kinetic energy (other than that 
dissipated by the internal friction of the solids or remaining as elastic vibrations) is 
restored as the particles rebound. The sticking probability is essentially zero when 
the energy dissipated in the solids and fluid is negligible. The theory describing the 
motion and deformation of elastic particles during such a collision is known as Hertz 
contact theory and can be found in many textbooks on elasticity (e.g. Love 1927). 
For the related situation in which the fluid resistance is negligible, but in which a 
fraction 1 - e of the incoming kinetic energy is dissipated in the solids, Dahneke (1971, 
1972, 1973) and Loffler (1980) have developed a simple model for predicting the 
critical normal impact velocity which would allow colliding particles to escape 
(rebound) from an interparticle potential well of a finite depth E.  This critical velocity 
depends upon the coefficient of restitution e and the adhesion energy E,  each of whose 
values are uncertain. Nonetheless, reasonable estimates of these parameters have been 
made by Dahneke (1973), Tsiang et al. (1982), Loffler (1980), and Esmen, Zeigler & 
Whitfield (1972) in order to  get good agreement between theory and experiment. At 
the opposite extreme, when rigid spheres undergo relative motion in a viscous fluid, 
the kinetic energy of the spheres is dissipated by non-conservative viscous forces as 
they approach one another. The rate of close approach is asymptotically slow (Cox 
& Brenner 1967 ; Cooley & O’Neill 1969), and the spheres do not deform or rebound. 

I n  between these two limiting cases, it  is natural to suppose that a portion of the 
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incoming kinetic energy of the spherical particles will be dissipated by fluid forces 
and internal solid friction and that the rest will be transformed into elastic-strain 
energy of deformation. Depending on the fraction of the kinetic energy that becomes 
stored as elastic-strain energy, the deformation of the spheres may be significant and 
rebound may occur. By simultaneously accounting for elastic deformation and 
viscous fluid forces, the research outlined in this paper provides the first steps in 
estalishing rational criteria, based on first principles, for determining the range of 
conditions for which significant deformation and rebound of colliding spheres are 
predicted when viscous forces are important. 

2. Theoretical development 
Our theoretical problem follows the motion along the line-of-centres of two elastic 

spheres. As such, we shall find that the sphere may rebound a small distance after 
a head-on collision, but that they will not completely separate. A study of oblique 
collisions will therefore be needed in order to determine the sticking probability. 
Nonetheless, we expect that the dominant features of the deformation and rebound 
will result from the component of motion along the line of centres. The two 
deformable solid surfaces are assumed to be smooth and to be separated by a thin, 
incompressible Newtonian fluid layer. It is also assumed in this paper that the 
interparticle forces are negligible and that the fluid layer behaves as a continuum. 
(See $4 for an elaboration on the effects of interparticle forces and the discrete 
molecular nature of the fluid on the collision process.) In this case, the thin fluid layer 
prevents the surfaces from actually touching. However, if the spheres have sufficient 
inertia as they approach one another, then a large pressure will build up as the fluid 
is squeezed out from between the spheres. It is this hydrodynamic pressure that causes 
the elastic solids to deform. The deformed and undeformed surfaces of the two elastic 
spheres are sketched in figure 1. 

For typical solids with large elastic moduli, the relative motion may be divided 
into inner and outer regions. In  the outer region the deformation is negligible as the 
nearly rigid spheres move from far apart to a position where the separation between 
their surfaces is small compared to the radius of either sphere. In the inner region 
the spheres approach even closer together, and the deformation may then become 
significant. We shall restrict our attention to these final stages of close motion, since 
it is then that the deformation and rebound that are of interest occur. In  our 
theoretical formulation, we allow the spheres to have arbitrary radii. In the limit, 
as the radius of one of the spheres goes to infinity, our problem becomes that of a 
sphere impacting on a plane. For initial conditions, we specify that the spheres start 
with a distance xo between their undeformed surfaces and with a relative velocity v,, 
towards one another supplied from the solution for the relative motion in the outer 
region. We require that q, be much smaller than the radius of either sphere and that 
the spheres be sufficiently rigid so that the surfaces deform only within a small area 
near the axis of symmetry. (This latter restriction was also made by Muller, 
Yushchenko & Derjaguin (1983) and by Hughes & White (1979) when studying the 
static deformation of elastic spheres, and it lies a t  the heart of the Hertz contact 
theory of linear elasticity. For most solid particles, this restriction is very reasonable.) 
The undeformed spherical surfaces can then be approximated by paraboloids in the 
region of near contact, and the deformed gap profile is given by 

r2 
2a h(r , t )  = x(t)+-+w(r,t), (1)  
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FIGURE 1. Schematic of the deformation of two colliding elastic spheres in a viscous fluid: -, 
the actual deformed surfaces; ---, the undeformed surfaces. 

where z(t) is the distance between the undeformed surfaces, w(r,  t )  = w1 + w, is the 
sum of the dynamic deformations of the two surfaces from their original shape (see 
figure I ) ,  a is the reduced radius a, a,/(a,+a,), and a, is the radius of sphere i .  

I n  order to determine the deformation w(r, t ) ,  we shall follow the development of 
the Hertz contact theory of linear elasticity (Love 1927) and also the developments 
of Hughes & White (1979) and Muller et al. (1983), who have studied the static 
deformation of contacting spheres subject to interparticle molecular surface forces. 
The essence of the theory is that an  applied normal force distributed over the surface 
of an elastic solid will cause i t  to deform. Provided that this deformation is small, 
it can be determined by integrating the surface-stress distribution multiplied by a 
Green function over the area subjected to  the stress, where the appropriate Green 
function is the fundamental solution of the linear-elasticity equations for an applied 
point force of unit magnitude. For our problem, the formulation of this integral for 
the surface deformation is (see the Appendix for a derivation) : 

r m  

where f ( r , t )  is the stress distribution over the solid surfaces a t  the time t .  In  the 
present work, we set this equal to  the hydrodynamic pressure exerted by the fluid 
layer; we intend later to  include an  interparticle potential contribution to the force. 
The parameter 8 is defined as 

where vi is Poisson’s ratio for sphere i, and E, is Young’s modulus of elasticity for 
sphere i. Also, the Green function kernel $(r ,  y) is given by 

where K is the complete elliptic integral of the first kind (see Abramowitz & Stegun 
1964, p. 589-592, for the properties of this elliptic integral). The kernel +(r ,  y) depends 
only upon the ratio y / r  and is plotted in figure 2. A critical feature of (2) is that it 
is quasi-static, i.e. the deformation is determined only from the instantaneous stress 
distribution ; thus elastic oscillations are neglected. This is justified provided that 



Elastohydrodynamic collision of two spheres 483 

1.2 

0.6 

0 I .o 2.0 4.0 
z = y / r  

FIGURE 2. The kernel $(y/r). 

the duration of impact is large compared to the period of vibration. The period of 
vibration is proportional to u/c, where c is the speed of elastic sound waves in the solid 
material, whereas the duration of impact r as given in the absence of fluid by Hertz 
contact theory is proportional to u/(dw'g). The duration of impact can be estimated 
as follows. The surface displacement of two touching particles travelling at a relative 
velocity vo during time 7 is w , ~ .  Comparing this to the surface profile (1) gives the 
radius r of the flattened area to be proportional to (uv, r):. Hence, an estimate of the 
elastic strain is w , T / r ,  which gives a total elastic force between the particles on the 
order of magnitude of F = nr2Ev, r / r .  The impulse FT must reverse the initial particle 
momentum $nu3psv,. Solving the algebra gives the quoted result for r (noting that 
c x (E/ps)i, where ps is the solid density and E is Young's elastic modulus). Strictly 
speaking, the waves can therefore be neglected only when (w,/c): + 1 ,  which restricts 
the analysis to moderate collision velocities (c is on the order of lo5 cm/s for most 
solid materials). However, experiments have shown that vibrations can be neglected 
for nearly all conditions encountered in practice and that a more significant limitation 
of Hertz contact theory applied to the collisions of spheres is that the resulting 
deformation should not exceed the elastic limit (Goldsmith 1960 ; Landau & Lifshitz 
1959). 

The deformed shape of the sphere surfaces cannot be determined without knowledge 
of the pressure profile in the fluid layer between the solid surfaces. Since we have 
restricted our attention to the case where these surfaces are very close to one another, 
the fluid flow within the narrow gap between them is fully developed to leading order 
and can be described by the well-known lubrication equation of fluid dynamics (see 
Hocking 1973 for the method of derivation of this equation) : 
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where p(r ,  t )  is the pressure profile in the fluid layer which, to leading order, does not 
vary at  any given time across the width of the narrow gap. Also, h(r, t )  is defined by 
(1) and includes the surface deformation; thus (2) and (4) are coupled. In the 
derivation of (4), the inertia terms are assumed to be small. This is justified provided 
that Re xo/a 4 1, where the Reynolds number is defined by Re = pvo a lp ;  p is the fluid 
density, and p is its viscosity. Since xo/a is assumed to be much less than unity, the 
inertia of the fluid may be neglected in our analysis even when the Reynolds number 
is not small. Note, however, that we are assuming in our initial conditions for the 
deformation w(r,  t )  that there is negligible elastic deformation in the outer region 
where fluid inertia can be important. 

Finally, in order to complete the formulation of the governing equations, we also 
require the kinematic equations which describe the relative motion of the undeformed 
surfaces of the solid spheres: 

dx dv 
dt 

- = - v ( t ) ;  
dt 

m -  = -F( t ) ,  

where v( t )  is the relative velocity of the centre of masses of the two spheres, and rn 
is the reduced mass. We retain the inertia of the particles in our analysis, even though 
the inertia of the fluid is assumed negligible. This approach is valid for aerosols, since 
the particle density is much greater than the fluid density. For hydrosol particles, 
if the particle inertia is significant, then the fluid inertia is also significant during the 
course of their motion before the gap between them becomes small. In fact, inertia 
may dominate in the outer region, which yields the simple solution of nearly constant 
particle velocities. In most applications, however, the gap between the particles 
during the time in which the deformation is important is so small that our neglect 
of the inertia of the fluid within this narrow gap is justified. In our problem, the force 
F(t)  on the spheres is equal to the integral of the stress distribution over their surfaces. 
If there is also a body force present, such as a gravitational force, then this should 
also be included in the right-hand side of (5b ) .  For collisions between particles 
having sufficient inertia to deform, an order-of-magnitude estimate reveals that the 
contribution to the force due to gravity is relatively small. Hence we are neglecting 
gravity in the present analysis. The initial conditions for (5 )  are v = vo and x = xo 
at t = 0. 

3. Method of solution 
3.1. Asymptotic solution for small deformations 

Equations (1)-(5) are coupled and in general require numerical methods to simul- 
taneously solve them for the dynamic deformation and pressure profiles. However, for 
small deformations (w 4 x), these equations can be solved by asymptotic methods. 
Let us briefly consider the leading-order solution for small deformations. By setting 
w = 0 in (1) and then solving (4) for the pressure profile, we find that 

From this, the hydrodynamic force on the spheres is F(t)  = 6na2w/x. These results 
are, of course, equivalent to the well-known lubrication theory for the relative motion 
of rigid spheres in close contact. The presure distribution may then be used in (2) 
to determine the deformation profile, whence 
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FIQURE 3. Asymptotic theory for small deformations : 
-, I ( [ )  defined by equation (7); ---, n/25. 

The integral I(E) is plotted in figure 3, along with the asymptotic result I - n/25 for 
6 $ 1, which follows from the fact that $(e ,  7) - ny/2,5 for 6 % 7. Also, q5(6, 7) = in 
for 6 = 0, so that I (0 )  = n2/41/ 2, which is the maximum value of the integral. 

For (6) and (7), we see that the pressure and deformation profiles depend 
parametrically on the values of v and x ,  each of which is a function of time. Dividing 
(5b)  by (5a)  in order to eliminate time, and then integrating, we find that 

where we have used the initial conditions v = vo when x = xo. Also, the Stokes number 
is defined as St = mwo/6n,ua2 and provides a measure of the inertia of the particles 
relative to the viscous forces. Finally, substituting (8) into (5a) and solving for the 
separation of the undeformed surfaces as a function of time yields : 

V O t  St e-St{Ei (st) - Ei (St - In ( x o / x ) ) }  = -, 
XO 

(9) 

where Ei is the exponential integral. 
The small-deformation solution described above is valid only for w / x  4 1. By 

substituting (8) into (7), it  is straightforward to show that the maximum value of 
w / x  for St > 0.4 occurs at x = xo exp (0.4-St) and is equal to 

3n2s exp (2.5St- 1)/(  10 > 2 St), 

whereas, for St < 0.4, the maximum value of w / x  occurs at x = xo and is equal to  
37r2e/4 2. Here, we have introduced a dimensionless elasticity parameter defined by 
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This parameter provides a measure of the tendency of the solids to  deform. I ts  value 
must be small compared to  unity in order for the deformation to  be small a t  time 
t = 0. I n  aerosol and hydrosol dispersions, typical values for E are in the range 
10-7-10-5 (consider, for example, 10-100 pm sandstone particles in water for which 
E = 5.7 x 1011 dyne/cm2, v = 0.10, ps = 2.6 g/cm3, p = 1.0 cP, uo = 10 cm/s, and 
x, x 0 . 0 1 ~ ) .  A Stokes number of approximately five or greater is therefore required 
if the deformation is to be non-negligible. From this, we can make the rough estimate 
that hydrosol particles must be of radius greater than approximately 100 pm if any 
significant deformation is to  occur during collisions, whereas solid aerosol particles 
as small as a few microns in size may have sufficient inertia to deform and then 
rebound upon impact. These estimates, of course, depend on the initial relative 
velocity from the outer region, as well as the physical parameters of the particles and 
fluid. 

3.2. Numerical analysis 
Since we are primarily interested in deformations that are sufficiently large that the 
spheres may rebound, the small-deformation theory described above must be 
supplemented by a numerical solution for larger deformations. For a given set of 
conditions, the small-deformation theory is used until w/x can no longer be neglected 
when compared with unity (in our calculations, we switched to  the numerical solution 
when w(0, t)/z x 0.05, although the exact choice of this small number does not affect 
the final results). The values of x, u ,  and tat this point can be determined from (7)-(9). 
These quantities, along with the corresponding w(r ,  t )  given by (7),  are then used as 
initial conditions for the numerical routine. The numerical computations are greatly 
facilitated by making the governing equations dimensionless. Using x, as a charac- 
teristic length in the axial direction, (ax,): as a characteristic length in the radial 
direction, and vo as a characteristic normal velocity, the only non-dimensional 
parameters are 6 and St, which have been defined earlier. However, a rescaling is 
appropriate a t  the start of the numerical solution because the initial choice of x, is 
somewhat arbitrary, and x/xo may be much less than unity when significant 
deformations occur. (Recall that xo and uo are supplied by linking our solution in the 
inner region to the solution for the particle motion in the outer region. The only 
restrictions on the choice of 2, are that xo/a < 1, E 4 1, and Rex,/a -4 1.) A more 
appropriate axial lengthscale when the deformation is significant is x1 = (4Bpub,)~, 
which, when used in place of x, in ( lo),  yields a value of unity for the scaled 
elasticity parameter. This rescaling greatly simplifies our analysis because only a 
single parameter St needs to be varied when carrying out the laborious numerical 
computations. 

An explicit time-stepping routine, based upon finite-difference techniques, for the 
simultaneous numerical solution of the initial-value problem described by the 
dimensionless analogue of (1)-(5) suffers from instabilities such as characterize the 
numerical solution of parabolic differential equations. Instead, we have developed an 
implicit time-stepping routine, also based upon finite differences, which is quite 
powerful. At each new time step, a deformation profile is assumed (extrapolated from 
the previous time step), and the pressure distribution is computed from the numerical 
solution of (4). An upgraded deformation is then determined by performing the 
integration in (2). (We note that $ ( r ,  y) is logarithmically singular a t  y = r.  The 
difficulty in performing the numerical integration is overcome in the usual way by 
subtracting the singularity. Also, for y/(axl)i > 4, the integration is performed 
analytically using the appropriate asymptotic expansions for the pressure profile and 
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for the kernel $( r ,  y ) . )  An iterative procedure is continued until the solution converges 
to the desired degree of accuracy. However, when the deformation becomes comparable 
to the undeformed gapwidth x ,  direct substitution of the upgraded deformation into 
(4) to compute an upgraded approximation for the pressure results in a diverging 
iteration scheme. This difficulty was also encountered by Hughes & White (1979) who 
computed the quasi-static deformation of two spheres subject to interparticle surface 
forces. The convergence of the iteration scheme has been improved by introducing 
an adjustable under-relaxation parameter. 

As discussed earlier, the numerical computations need to be carried out only for 
a single value of E (we chose E = 0.01) and varying St. The particle motion and 
deformation for other values of e 4 1 may then be found simply by matching the 
numerical computations with the asymptotic solution for small deformations, and 
by using the fact that xo/xl = s- f .  The details of the numerical solution and of the 
transformation to other values of E may be found in the thesis of Serayssol (1985). 

4. Results and discussion 
In order to visualize more fully the dynamic interaction between two elastic 

spheres, let us first examine rather comprehensive results for the single case of 
(x,/xo)t  = E = 0.01 and St = 5.0. In figures 4-6 are plotted h(r, t ) ,  w( r ,  t ) ,  and p ( r ,  t )  
for these conditions. The spheres start out with a small deformation given by the 
asymptotic theory described previously. As the gap between the surfaces decreases, 
the pressure in the fluid layer increases. This pressure causes a further flattening of 
the particles. However, the pressure also causes the spheres to slow down, which 
eventually leads to a decrease in the pressure. A t  r = vot /xo  = 1.8, the deformation 
of the surfaces from spherical reaches a maximum and then a relaxation occurs. 
Moreover, the relative velocity of the spheres is reduced to zero at  r = 2.1, and the 
spheres then begin to rebound. As the spheres move apart, a negative pressure 
(relative to the bulk fluid) results as fluid is drawn in to fill the gap between the 
receding solid surfaces. This tensile stress opposes the motion of the spheres and limits 
their rebound velocity (assuming that the tensile stress does not become so large that 
cavitation occurs). The maximum rebound velocity is v/vo = -0.34, which occurs a t  
r = 3.0. The fluid force prevents the spheres from escaping one another; instead, they 
undergo a damped oscillation and come to rest at a separation of x /x ,  = 0.15. This 
is seen more clearly in figure 7 where the force, relative velocity, and relative position 
of the two spheres are plotted as functions of time. Also, the kinetic energy of the 
two spheres, Ek(t)  = +v2, and the strain energy of deformation, 

w ( r ,  t )  

EJt)  = 2~ s: 
w(r,  0) 

are shown in figure 8. As the spheres approach one another, rebound, and then 
oscillate, a portion of the kinetic energy is converted into strain energy and then 
restored. Eventually, however, the non-conservative viscous forces damp out this 
motion. The work done by the fluid is equal to the sum of the change in kinetic energy 
and the change in strain energy; this is also given in figure 8. 

For comparison figures 9 and 10 show h(r , t )  for E = 0.01 and St = 2.5 and 10 
respectively. When St = 2.5, the deformation and rebound are much less than when 
St = 5.0. On the other hand, when the inertia of the spheres is decreased to St = 10, 
there is considerable flattening of the spheres in the vicinity of contact. In fact, a 
very shallow dimple forms near the axis of symmetry. This can be seen more clearly 

f ( r ,  t )  dw rdr,  
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FIGURE 4. The dynamic gap profile for St = 5 and E = 0.01. 
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FIQURE 6. The dynamic pressure profile for St = 5 and E = 0.01. 
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FIQURE 7. The dimensionless force, relative velocity, and distance between the undeformed 
surfaces aa functions of time for St = 5 and E = 0.01. 
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FIGURE 10. The progression with time of the deformed-gap profile 
with St = 10 and E = 0.01. 

with the expanded scale shownin figure 11. Although dimple formation is a well-known 
phenomenon in the study of the motion of drops and bubbles towards surfaces (Jain 
& Ivanov 1980 ; Chen 1984), this is believed to be the first prediction of the formation 
of a similar dimple in a solid particle. 

For figures 4-11 we chose E = 0.01, which is somewhat larger than typically 
encountered in practice, in order to focus on the region of interest, namely that where 
the deformation is significant. For smaller values of E = (xl/xo)t, the spheres start 
farther apart and do not deform until x is no longer large compared to xl. Provided 
that the inertia is sufficiently large (St 9 5 )  to bring the particles this close to one 
another, the behaviour during the h a 1  stages of approach is similar to that depicted 
in figures 4-1 1 .  

Of significant practical interest are the maximum rebound velocity, the closest 
distance of approach of the solid surfaces, and the equilibrium separation after the 
oscillations cease. In  figures 12-14, these quantities are shown as functions of the 
parameters E and St. As expected, the maximum rebound velocity v, increases as both 
E and St increase. The dimensionless rebound velocity v,/vo can be thought of as a 
coefficient of restitution, only it measures the energy dissipated in the fluid rather 
than in the solid material. The closest distance of approach h, decreases rapidly as 
St increases when the deformation is small (from (8) with v = 0) ,  but it is relatively 
insensitive to St when the deformation is significant. Evidently, when the inertia of 
the particles is large, the very large pressure in the thin fluid layer primarily serves 
to flatten the particle surfaces and resists further decreases in gap size. The 
appropriately scaled approach distance h,/x, becomes independent of e when the 
deformation is significant (8t % 1) .  This is expected because E may be varied merely 
by varying the initial gap size xo. When the particle inertia is large, the motion and 
resulting deformation are independent of xo (i.e. the decrease in the relative velocity 
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of the particles as they move from one value of xo to a smaller value of xo is negligible 
for St $. 1). Finally, in figure 14, it is seen that the equilibrium separation of the 
spheres x, decreases as St increases for small St, reaches a minimum, and then 
increases when St is increased further. This behaviour represents a trade-off between 
an increased inertia, which carries the spheres closer together before they are stopped 
by the viscous forces, and an increased deformation, which causes the spheres to 
rebound further apart. 

The theory and results described in this paper represent the first steps in providing 
rational criteria for predicting whether particles colliding in a fluid stick or rebound. 
Besides plasticity effects, there are several additional features which need to be taken 
into account in order to develop a comprehensive theory. One modification which we 
are currently investigating is the influence of interparticle forces of molecular origin 
on the motion of the particles and on the shape of their deformed surfaces (Serayssol 
& Davis 1985). For the non-colloidal particles considered in the present paper, i.e. 
particles larger than approximately one micron in size, these forces are weak unless 
the surfaces are very close. However, it is evident from figures 13 and 14 that the 
surfaces do become very close during the course of the collision, and interparticle 
forces may play a significant role. Moreover, for aerosol particles, the mean free path 
of the surrounding gas molecules is about 0.1 pm at standard conditions. Since it is 
very conceivable that the surfaces of the aerosol particles will approach each other 
more closely than this, a second need is to modify the lubrication equation of fluid 
dynamics (4), which is based upon the treatment of the fluid as a continuum, in 
order to account for the discrete molecular nature of the fluid. As shown by Hocking 
(1973), who used a simple Maxwell-slip model to study the relative motion of rigid 
spheres in aerosols, actual physical contact between the solid surfaces can occur in 
this case. Compressibility of the fluid may also be important during the collision of 
aerosol particles. For the relative motion of solid particles in liquids, it is expected 
that neither non-continuum nor compressibility effects will play a significant role. 
However, we have seen that a tensile stress (negative relative pressure) occurs as the 
spheres rebound. If the absolute pressure drops below the vapour pressure of the 
liquid, then the formation of cavitation bubbles also needs to be considered. Surface 
roughness may also strongly influence the collision process. For larger particles there 
can be significant elastic deformation in the outer region where fluid inertia is 
important. See Lawrence & Weinbaum (1985), Weinbaum, Lawrence 6 Kuang (1985) 
and Lawrence, Kuang & Weinbaum (1985) for a study of the role of fluid inertia in 
slowing down the approach of two particles. Finally, the present paper is restricted 
to particles in near-contact and to collisions along the line of centres. By including 
also the tangential component of particle collisions, one would be able to compute 
the trajectories of the particles in near-contact. These can then be coupled with the 
particle trajectories when they are not in near-contact (and when the deformation 
is presumably negligible) in order to determine whether the particles ultimately stick 
or separate. 

This work was initiated while Dr Davis was an NSF-NATO post-doctoral fellow 
at the Department of Applied Mathematics and Theoretical Physics at the University 
of Cambridge. It has continued at the University of Colorado with the support of 
the AMOCO Foundation and of the National Science Foundation under grant 
CBT-844743. 
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Appendix 
This appendix gives a Fourier transform derivation of ( 2 )  for the elastic deformation 

of a half-space due to an imposed axisymmetric pressure distribution. We assume that 
the elastic deformation is small so that linearized elasticity theory can be applied. 
Also if the gap is small, the particle can be approximated by a half-space, say z > 0. 
With an elastic deformation field u(z), the elastic stress can be expressed, using 
Einstein index notation, in terms of the Lam6 constants A and p :  

g1j = A 4 ,  %, 12 +P(UZ,j + 9 . 1 ) .  (A 1) 

cr l j , j  = 0 in z > 0. (A 2 )  

crzz = cryz = 0, crLZ = -p(z,y) on z = 0. (A 3) 

The conservation of momentum is 

The boundary condition of an applied normal pressure is 

We start by considering a single Fourier component in the forcing, i.e. 

p(x, y )  = f l  eikx. 

The elastic deformation then takes the form 

4 = i (c+dkz)  eikx-kz, .G = 0, zir = (a+bkz)  eikx-kz, (A 4) 

with constants a, b, c ,  and d to be determined. Substituting into the field equation 
yields 

Substituting into the boundary conditions yields 

b f d  = 0, A ( u - ~ + c ) + ~ ( u - ~ ~ + c )  = 0. 

a-b -c  = O ,  h k ( - ~ + b - ~ ) + 2 p k ( - ~ + b )  = -$. 

Solving, we have 

Now, the required vertical displacement of the boundary is &(z = 0) = a. Adding 
together the different Fourier components and inverting the transform of i l k ,  we find 

Now, Young’s elastic modulus is E = p(3A+2p) / (A+p)  and Poisson’s ratio is 
v = A/2(A+p) ,  so that 

( A  + 2p) /p(A +p)  = 4( 1 - v2) /E .  

Finally, for an axisymmetric pressure distribution p(r) we can integrate over the 
azimuthal angle to find the desired result : 

where K is the complete elliptic integral of the first kind, defined as in Abramowitz 
& Stegun (1964). 
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